Física do Laser

FUNDAMENTOS FÍSICOS

FUNDAMENTOS FÍSICOS

Luz, laser e seus princípios básicos

A luz pode ser descrita como uma emissão eletromagnética, e como tal, tem algumas características que a identificam plenamente. Essas emissões são conhecidas, genericamente, por radiações ou ondas eletromagnéticas, e estão contidas em uma grande banda ou faixa, que está subdividida de acordo com algumas características físicas peculiares. Existem as que não podemos ver, tais como as ondas de rádio AM e FM (Figura 3), e existem aquelas que podemos ver, tais como as luminosas, compostas por fótons, tais como a luz emitida pelas lâmpadas dos lustres das casas. As emissões estão organizadas segundo o que se chama de “Espectro de Radiações Eletromagnéticas”, baseado em uma característica particular: o comprimento de onda. (Figura 4) Esse espectro é composto por radiações infravermelhas, radiações visíveis, radiações ultravioletas, radiações ionizantes (raios x e raios gama), além de outros tipos de radiação que não dizem respeito a este trabalho.

Os laseres utilizados para tratamento médico, odontológico e veterinário (aquilo que chamamos de “Ciências da Vida”) emitem radiações que estão situadas na faixa das radiações visíveis, infravermelhas e ultravioleta e não são ionizantes. Para podermos identificar em que parte do espectro está classificada uma determinada radiação, precisamos conhecer seu comprimento de onda, que nada mais é do que a distância medida entre dois picos consecutivos de uma trajetória ondulatória (em forma onda). (Figura 5) A unidade utilizada para expressar; grandeza é uma fração do metro, normalmente o nanômetro, que é equivalente a 0,000000001 m (ou 10-9).

Uma maneira simples de entender o conceito de espectro é observando um arco-íris (Figura 4) este fenômeno natural é formado pela decomposição da luz branca em sete cores básicas. Estas sete cores, que podemos enxergar, fazem parte do espectro de radiações eletromagnéticas, são definidas por seus comprimentos de onda e quando misturadas geram a cor branca. Cada “cor” emitida tem um comprimento de onda próprio, e isso acontece com outras “cores” que não conseguimos enxergar, mas cujos efeitos podemos sentir.

Figura 3 – Oscilações, radiações ou ondas eletromagnéticas, são expressões que podem ser usadas como sinônimo.

 

Figura 4 – Espectro de radiações eletromagnéticas.

 

Figura 5 – Mensuração do comprimento de uma onda eletromagnética.

Na escala de comprimento de onda, abaixo da faixa de emissões que chamamos de “visível”, temos o “ultravioleta”, que é uma faixa muito ampla. A emissão ultravioleta é responsável pelo escurecimento de nossa pele quando nos expomos ao sol. Acima da faixa de emissões que chamamos de “visível”, temos o “infravermelho”, que é também uma faixa muito mais ampla do que a faixa que conseguimos enxergar. Este tipo de emissão é a responsável pelo aquecimento que observamos na luz gerada pelos aparelhos fotopolimerizadores que utilizam fonte de luz halógena, e que é comumente chamada de “calor”.

O laser nada mais é do que luz, e portanto tem o comportamento de luz, ou seja, pode ser refletido, absorvido ou transmitido, sofrendo ou não espalhamento no processo. (Figura 6) Entretanto, é uma luz com características muito especiais, tais como: unidirecionalidade, coerência e monocromaticidade.

Figura 6 – O laser tem o comportamento de luz.

O laser é um tipo de luz cujos fótons são idênticos e se propagam sobre trajetórias paralelas, diferentemente da luz comum, onde fótons de comprimentos de onda diversos são emitidos e se propagam de forma caótica, em todas as direções. (Figura 7) É ainda uma luz coerente, onde os picos e vales de todas as trajetórias em forma de onda dos fótons que a compõem, coincidem em termos de direção e sentido, amplitude, comprimento e fase. São esses aspectos que a difere da luz comum onde não existe sincronia entre os fótons emitidos.(Figura 8) Como todos os fótons emitidos por um aparato laser padrão são idênticos, se propagam segundo trajetória, direção, sentido, amplitude e fase idênticos. São dispositivos capazes de emitir luz com comprimento de onda único e definido. Podemos, então dizer, que esses fótons são de cor pura. (Figura 9)

Figura 7 – O laser é uma luz passível de sofrer colimação, ou seja, caminha de maneira “paralela”, diferente da luz comum que se perde no tempo e no espaço.

 

Figura 8 – O laser é uma luz coerente.

 

Figura 9 – O laser é uma luz monocromática.

Para a produção de um laser, são necessárias algumas condições especiais. Primeiramente necessita-se de um “Meio Ativo”, composto por substâncias (gasosas, líquidas, sólidas ou ainda por suas associações) que geram luz quando excitadas por uma fonte de energia externa. Esse processo de excitação é denominado de Bombeamento e sua função é transformar o meio ativo em meio amplificador de radiação, já que promove neste, o fenômeno denominado Inversão de População, ou seja, os elétrons da camada de valência do meio absorvem a energia bombeada e saltam para um nível de energia mais externo. Como esse segundo nível está mais distante da influência do núcleo, seu nível de energia é maior. Chamamos essa situação de estado metaestável. Quando o primeiro elétron decai, retornando ao nível com menor energia (energia original), ocorre a liberação de um “pacotinho” de energia altamente concentrado, ao qual chamamos fóton. (Figura 10) Esse fóton acaba por excitar o decaimento dos demais átomos que já estavam no estado excitado (metaestável). Isso gera um processo em cascata e com crescimento em progressão geométrica, que resulta na emissão estimulada de radiação (Bagnato, 2001). O meio ativo deve estar contido em reservatório denominado Cavidade Ressonante. Nas extremidades internas dessa cavidade devem existir espelhos, sendo um deles de reflexão total e outro de reflexão parcial. Isso assegurará que esse sistema composto por reação óptica e meio ativo seja a sede de uma oscilação laser. Como a cavidade do laser é composta por espelhos em suas extremidades, essa radiação é amplificada, ou seja, os fótons emitidos por estimulação entram em fase (todos os fótons assumem uma mesma direção) e permitem que ocorra um incremento a cada “viagem” (reflexões múltiplas) completada dentro da cavidade. Existem muitos tipos de laser, porém, o principio básico para se produzir um feixe de laser é o mesmo para todos eles, quer seja um laser cirúrgico, terapêutico ou de diagnóstico. (Figura 11)

Figura 10 – Formação de um fóton.

 

Figura 11 – Diagrama da cavidade ressonante de um laser genérico.

Para a identificação do laser, precisamos conhecer sua fonte geradora (caracterizada pelo meio-ativo que vai gerar a luz laser) e sua intensidade (caracterizada pela densidade de potência óptica produzida ou energia gerada do laser). Do mesmo modo que as lâmpadas residências são identificadas pelas potências, normalmente expressa em Watts, também utilizamos esta unidade (ou uma fração dela), para identificar a potência dos laseres (1mW = miliWatt = 0,001W). A última característica relevante dos laseres é referente ao seu regime de funcionamento, isto é, existem aqueles que quando acionados, permanecem ligados continuamente até serem desligados (laseres contínuos, CW) e existem outros tipos que funcionam de forma pulsada ou chaveada (Figura 12), ou seja, estão parte do tempo ligados e parte do tempo desligados. A maioria dos laseres terapêuticos opera de modo contínuo.

Figura 12 – Diferentes tipos de emissão de um diodo laser.

Laser de semicondutor

Os laseres de semicondutor são os emissores de menores dimensões existentes e podem ser produzidos em grande escala. Graças à sua eficiência e pequeno tamanho são especialmente adequados para utilização em clinica odontológica.

O meio ativo mais simples está constituído por um diodo (junção P-N) com elevada concentração de impurezas (dopantes) doadoras na zona N e receptoras na zona P, e para o qual o material base é o mesmo para ambas zonas (por exemplo GaAs ou InP). Esse tipo de arranjo é conhecido com o nome de homojunção. A configuração básica deste tipo de diodo está indicada na (Figura 13 A).

Quando se aplica uma tensão elétrica V, polarizando diretamente essa união, é criada uma estreita região em torno da mesma, onde se produz uma inversão de população. Ela acontece quando existe uma maior probabilidade de que os elétrons estejam na banda de condução, do que na banda de valência. A polarização direta produz uma corrente elétrica que se traduz na passagem de elétrons à zona P e de vazios à zona N. A radiação luminosa se produz por uma recombinação de elétrons e vazios na zona de junção.

O comprimento de onda da transição depende do salto energético entre a banda de valência e a de condução. A energia potencial necessária para que um elétron salte da banda de valência à banda de condução é igual à energia do fóton que se produz depois da sua recombinação.

Normalmente os laseres de diodo comerciais são do tipo de heterojunção (Figura 13 B), ou seja, formados pela união de dois materiais distintos (por exemplo GaAs e AlGaAs). Este tipo de estrutura apresenta algumas vantagens técnicas em relação à homojunção, por isso é mais utilizada rotineiramente.

Para se obter a ação laser, duas faces do elemento semicondutor são cortadas paralelamente e polidas (para funcionarem como espelhos), sendo que nas outras duas é necessário que o acabamento seja rugoso, a fim de evitar que se produza o fenômeno laser entre as mesmas. Frequentemente as duas superfícies polidas não são recobertas com revestimentos anti-reflexivos, já que o índice de refração de um semicondutor é grande, e existe suficiente refletividade (cerca de 35%) na superfície entre o semicondutor e o ar para produzir uma realimentação óptica aceitável.

A região ativa por onde circula a energia laser tem secção retangular, com dimensões típicas de 0,5 um x 10 um nos laseres de heterojunção. O raio laser de saída tem secção elíptica, com divergências diferentes no plano paralelo à união e no plano perpendicular. (Figura 13 B) Com sistemas ópticos adequados, esta secção pode ser convertida em circular, mais conveniente para posterior focalização.

As aplicações dos laseres de diodo são muito variadas, mas destacam-se sobretudo aquelas nas áreas médico-odontológicas, no campo das comunicações por fibra óptica, reconhecimento dimensional, leitura de código de barras, leitura de compact disk, impressoras de escritório, apontadores, entre outras.

Figura 13 A – Configuração básica de um laser de diodo.

 

Figura 13 B – Configuração básica de um laser de diodo de heterojunção dupla.

Aspectos históricos do laser

A aplicação da luz como tratamento fotote-rapêutico é bastante antiga. Em 1903, Finsen recebeu o Prêmio Nobel pelo avanço no tratamento do Lupus Vulgar utilizando fonte de luz ultravioleta. Especificamente para os laseres, tudo começou com Einstein, que postulou as bases teóricas sobre a manipulação controlada de ondas de luz, e publicou suas ideias em 1917. Esta teoria foi verificada por Landberg em 1928, mas somente entre 1933 e 1934 Townes e Weber falaram pela primeira vez em amplificação de microondas. Nessa mesma época houve um grande avanço no desenvolvimento de fibras ópticas e material óptico de uma maneira geral. A teoria da amplificação da emissão estimulada foi patenteada em 1951 por Fabrikant (físico russo) e sua equipe, entretanto permaneceram sem publicá-la até 1959.

O primeiro aparato em que se usou emissão estimulada foi chamado de MASER (outro acrônimo inglês formado a partir de Microwave Amplification by Stimulated Emission of Radiation), construído por Townes em 1952. Weber propôs no mesmo ano a amplificação do MASER, teoria publicada em 1953.

O primeiro laser da história foi construído em 1960, por um cientista americano, Theodore Maiman, nos Estados Unidos. Este primeiro laser foi desenvolvido a partir de uma barra de rubi sintético, que produzia uma luz de curta duração e de alta densidade de energia, operando em 694,3 nm quando uma luz comum intensa incidia sobre a mesma. Foi desenvolvido no Hughes Aircraft Research Laboratory em Malibu, e nessa data apresentada à imprensa. Em 1961, Gould obteve a patente de aplicação, feito que deu lugar a uma grande confusão acerca de quem seria seu inventor. Ele publicou as indicações biomédicas da luz laser de alta densidade de energia. A primeira aplicação foi realizada no campo da Oftalmologia, e também foi onde se observou a primeira complicação clínica. Em 1962, Dulberger publicou um trabalho sobre lesões produzidas pela focalização da luz sobre a retina e a consequente perda de visão.

Em 1961, foi fundado por Leon Goldman, na Universidade de Cincinnati, o primeiro laboratório de laser para aplicações médicas, onde as primeiras experiências “in vivo” foram realizadas.

Em 1962, Patel desenvolveu o primeiro laser que, posteriormente, seria usado com finalidade terapêutica, um aparato cujo meio ativo era uma mistura de gases Hélio e Neônio (He-Ne), gerando um feixe de luz laser com comprimento de onda de 632,8 nm.

Na antiga União Soviética, diferentes cientistas trabalhavam simultaneamente no desenvolvimento do laser. Basov e Prokhorov fizeram grandes progressos nessa área, e junto com Townes ganharam o Prêmio Nobel de 1964.

Em 1966, as primeiras aplicações clínicas com laser operando em baixa potência foram relatadas por Endre Mester de Budapeste, Hungria, por ocasião da apresentação dos primeiros relatos de casos clínicos sobre “Bioestimulação com laser” de úlceras crônicas de membros inferiores usando lâseres de rubi e de argônio (Mester, 1966). Ele produziu um grande volume de trabalhos científicos, clínicos e experimentais, tendo o laser de He-Ne como tema central.

Os laseres terapêuticos mais utilizados nas décadas de 70 e 80 foram os de He-Ne com emissão na região do vermelho (632,8 nm). Nesta região do espectro eletromagnético, a radiação laser apresenta pequena penetração nos tecidos biológicos, o que limitava a sua utilização. Para a aplicação desse tipo de laser em lesões mais profundas, seria necessário uma fibra óptica para conduzir a luz para o interior do corpo do paciente, limitando e contra-indicando muitas vezes esse tipo de terapia, por ser uma técnica invasiva.

Outra limitação dos laseres de He-Ne era sua grande dimensão física e também o fato de seu meio ativo estar contido por ampolas de vidro que se rompiam facilmente. O próprio gás Hélio, formado por átomos muito pequenos, migra rapidamente através da parede da ampola reduzindo drasticamente o tempo de vida destes aparelhos.

Em 1973, seguindo a mesma linha de Mester, Heinrich Plogg de Fort Coulombe, Canadá, apresentou um trabalho sobre “O uso do laser em acupuntura sem agulhas”, para atenuação de dores (Baxter, 1994). A partir do final dessa década, começaram a ser desenvolvidos laseres de diodo, dando origem ao primeiro diodo operando na região do infravermelho próximo (λ= 904 nm), constituído por um cristal de arseneto de gálio (As-Ga). As principais vantagens deste sobre o laser de He-Ne são menores dimensões e maior penetração no tecido biológico. Outra vantagem é que este dispositivo pode operar de forma contínua ou pulsada, enquanto que o He-Ne só opera em modo contínuo. O efeito da foto-bioestimulação utilizando laser pulsado foi tema de diferentes trabalhos, sendo que Morrone et al., em 1998, demonstraram que para aplicações “in vivo” a radiação contínua apresenta melhores resultados que a radiação pulsada, o que foi confirmado por Almeida-Lopes, em 2003, muito embora isso seja verdade exclusivamente para cicatrização de tecidos moles, mas não para cicatrização óssea e para o tratamento de dor.

Em 1981, apareceu pela primeira vez o relato da aplicação clínica de um laser de diodo de As-Ga-Al, publicado por Glen Calderhead, do Japão, que comparava a atenuação de dor promovida por um laser de e um laser de Nd:YAG, (Ytrio e Alumínio, dopado de Neodímio), operando em λ = 1064 nm.

No mesmo ano se concedeu o Premio Nobel a Schawlow, Bloemberger e Siegmahn, por seus estudos em espectroscopia aplicada à tecnologia laser. A partir dos anos 90, diferentes dopantes (agente dopante = impureza que altera as propriedade uma substância pura) foram introduzidos visando a obtenção de laseres de diodo diferentes, capazes de gerar comprimentos de onda diversos. Com a disponibilização dessa tecnologia, hoje podemos contar com aparelhos pequenos, de fácil manuseio e transporte, com alta durabilidade e baixo custo.

 

Aspectos teóricos: Laseres terapêuticos, Conceito de irradiância, fluência e energia depositada e Comprimento de onda.

Laseres terapeuticos

Os laseres terapêuticos ou laseres de baixa intensidade, são talvez os mais estudados mundialmente e, com certeza, já fazem parte da rotina de uma grande quantidade de consultórios em países como a Espanha, Rússia, Japão, Alemanha e Brasil. Uma das razões da popularidade deste tipo de laser está relacionada à eficácia e ao baixo custo do equipamento, além da objetividade e simplicidade dos procedimentos clínicos terapêuticos a que se destina.

Os primeiros laseres terapêuticos estudados como já dissemos, foram os laseres em que o meio era uma mistura gasosa de Hélio e Neônio (He-Ne) potência variando entre 5 e 30 mW, e comprimento de onda de 632,8 nm, que está situado dentro da visível do espectro de luz, mais precisamente nai da cor vermelha.

Consistia de um reservatório (tubo) de vidro preenchido com o referido gás, que era acionado por uma fonte de alimentação elétrica geradora de alta tensão. A condução da luz até o ponto de aplicação se dava através de cabo de fibra óptica flexível do tipo feixe de fibras (similar aos cabos utilizados nos fotopolimerizadores de primeira geração), o que conferia um baixo rendimento óptico ao sistema, isto é, pouca luz chegava ao ponto de aplicação.

Aliado à característica de baixo rendimento óptico, existe ainda o fato de que este comprimento de onda é altamente absorvido por tecido mole, o que compromete muito a penetrabilidade da luz.

Estas limitações técnicas impuseram a necessidade de se buscar laseres de baixo custo, com níveis de potência superiores e com comprimentos de onda que pudessem atravessar o tecido mole, sem contudo comprometer a integridade destes tecidos. Isso foi possível com o surgimento dos laseres de diodo, que conforme anteriormente discutido, são dispositivos eletrônicos relativamente simples e de baixo custo.

Os laseres de diodo mais utilizados em Odontologia têm como meio ativo o composto de GaAIAs, com comprimento de onda variando entre 760 e 850 nm (o mais utilizado atualmente é o de 830 nm), que está situado fora da faixa visível do espectro de luz, mais precisamente na faixa do infravermelho próximo, com potências variando entre 20 e 1000 mW.

Outro tipo de meio ativo utilizado é o composto de InGaAIP, que produz luz com comprimento de onda variando entre 635 e 690 nm, que está situado dentro da faixa visível do espectro de luz, especificamente na região da cor vermelha, com potências variando entre 1 e 250 mW.

A luz gerada por este tipo de emissor tem as mesmas características descritas para o emissor de gás He-Ne e, portanto, as mesmas limitações em termos de penetrabilidade.

 

Conceito de irradiância, fluência e energia depositada

Irradiância é o termo que os fotobiologistas usam como sinônimo para densidade de potência (DP), que é definida como sendo a potência óptica útil do laser, expressa em Watts (W), dividida pela área irradiada, expressa em centímetros quadrados (cm²). É através do controle da irradiância que o cirurgião pode cortar, vaporizar, coagular ou “soldar” o tecido, quando da utilização de laseres cirúrgicos. A densidade de potência apropriada pode também gerar fotoativação a partir de um laser de baixa intensidade de energia (laser terapêutico).

Fluência é o termo utilizado para descrever a taxa de energia que está sendo aplicada no tecido biológico. Ao multiplicarmos a irradiância (expressa em Watts por centímetro quadrado ou W/cm²), pelo tempo de exposição (expresso em segundos) obteremos a fluência ou densidade de energia, ou ainda dose de energia (DE) expressa em Joules por centímetro quadrado (J/cm²).

Energia é uma grandeza física que, no caso da laserterapia, representa a quantidade de luz laser que está sendo depositada no tecido, e é definida multiplicando-se a potência óptica útil do aparelho laser (expressa em Watts) pelo tempo de exposição (expresso em segundos). O resultado obtido tem como representação a unidade Joule (J).

A discussão sobre aspectos matemáticos será retomada em tópicos posteriores, pois nessa etapa, a questão que realmente interessa aos profissionais da área odontológica é o que significam essas grandezas, e como se relacionam. Acreditamos que através de exemplos poderemos tornar claros esses importantes conceitos:

1. Para uma dada potência, variações na irradiância podem produzir efeitos sobre o tecido biológico que são nitidamente diferenciados. Por exemplo, um laser com potência de saída de 10 W, irradiando uma área de 10 cm², apresentará irradiância igual a 1 W/cm². Se o mesmo laser for focalizado sobre uma área de 1 cm², a irradiância será aumentada em 10 vezes, provavelmente gerando dano térmico ao tecido biológico, dependendo do tempo de exposição.

Conclusão: Na verdade, para definirmos se um aparelho laser pode causar dano térmico, devemos analisar a irradiância gerada, e não a potência óptica útil do aparelho laser em questão.

2. Para uma dada quantidade de energia a ser depositada, variações na fluência podem produzir efeitos sobre o tecido biológico que são nitidamente diferenciados. Por exemplo, imaginemos que devemos aplicar uma dose total de 30 J sobre um ponto. Numa primeira hipótese, imaginemos que os 30 J sejam aplicados em 1 segundo, sobre uma área de 1cm². Teremos, então, irradiância igual a 30 W/cm², o que provavelmente ocasionará dano térmico ao tecido biológico. Imaginemos agora, que os 30 J sejam aplicados sobre a mesma área em 30 segundos. Teremos, para essa situação, irradiância igual a 1 W/cm², o que não ocasionará dano térmico ao tecido biológico.

Conclusão: A quantidade de energia a ser ministrada é importante, pois os tecidos responderão melhor à dose adequada de energia, entretanto, a forma como essa energia é depositada também é muitíssimo importante.

Utilizando como analogia das sistemáticas convencionais adotadas em Odontologia ou Medicina, ao prescrevermos um antibiótico, a dose medicamentosa é ministrada como no exemplo a seguir: Amoxicilina, 500 mg, 1 colher de sopa, a cada 8 horas, ou seja, o nome do princípio ativo e sua posologia (concentração do principio ativo, miligramas, quantidade e frequência de uso da referida droga).

Quando nos referimos à laserterapia, será indicada a dose expressa em Joules (energia, que é a quantidade de luz laser depositada no tecido), a fluência expressa em J/cm² (joules por centímetro quadrado), que é a taxa de deposição dessa energia (o modo como a energia será deposita número estimado de sessões, seguindo o mesmo princípio adotado na prescrição do antibiótico do exemplo anteriormente mencionado.

A energia (quantidade de luz laser aplicada) e a fluência, são conceitos fundamentais para a Biomedicina, já em Medicina e Odontologia, o termo utilizado para o mesmo conceito, é dose. Utilizando ainda a analogia da descrição do antibiótico, para que se obtenha determinado efeito medicamentoso, a dose terapêutica administrada é fundamental, ou seja, a prescrição de uma dose muito alta por quilograma/peso do paciente, implica na não obtenção do resultado esperado. Já a prescrição de uma dose muito alta, pode levar o paciente à intoxicação, ou mesmo a um choque anafilático. O mesmo acontece com a prescrição de terapia com laser de baixa intensidade, isto é, doses muito baixas não causam efeitos satisfatórios nos tecidos, enquanto que doses muito altas em tecido mole, podem levar a uma inibição do processo cicatricial (isso é verdade somente tecido mole).

 

Comprimento de onda

O comprimento de onda é uma característica extremamente importante, pois é quem define a profundidade de penetração no tecido alvo. (Figura 14) Diferentes comprimentos de onda apresentam diferentes coeficientes de absorção para um mesmo tecido. Jacques, em 1995 (Figura 15), resumiu os diferentes coeficientes de absorção para diferentes cromóforos em função do comprimento de onda (cromóforos são aglomerados moleculares capazes de absorver luz). Como podemos observar, as radiações emitidas na região do ultravioleta e na região do infravermelho médio apresentam alto coeficiente de absorção pela pele, fazendo com que a radiação seja absorvida na superfície, enquanto que na região no infravermelho próximo (820 nm e 840 nm) constata-se baixo coeficiente de absorção, implicando em máxima penetração no tecido (Karu, 1985,1987).

Os tecidos são heterogêneos do ponto de vista óptico e portanto, absorvem e refletem energia de maneira distinta. A importância da absorção acontecer de maneira diferenciada, segundo o tipo de tecido no qual a energia é depositada, está no fato de que, dependendo comprimento de onda, esse tecido absorve energia mais superficialmente ou permite que a luz o atravesse, agindo na intimidade tecidual (geralmente a membrana celular). A isso denominamos “seletividade” do laser.

Uma vez absorvida a energia luminosa na célula, esta se converterá em outro tipo de energia. Quando utilizamos laseres operando em alta intensidade, na maioria das vezes, esta se converterá em calor. Quando utilizamos laseres operando em baixa intensidade os comprimentos de onda baixos são capazes de eletronicamente estimular as moléculas ativando a cadeia respiratória celular, enquanto que para os comprimentos de onda mais altos a excitação ocorrerá através da membrana celular.

Figura 14 – Desenho didático ilustrando a penetração do laser em função do seu comprimento de onda.

 

Figura 15 – Coeficientes de absorção para diferentes tecidos em função do comprimento de onda, propostos por Jacques em 1995.

Como podemos observar na Figura 6, parte da luz que incide sobre uma superfície translúcida é refletida de volta para o meio de onde veio, parte é absorvida pelo material sobre o qual está incidindo, e parte atravessa o material, e retorna ao meio original. A luz refletida, bem como a luz transmitida, não tem relevância do ponto de vista de aplicação clínica.

Somente o processo de absorção será considerado, pois a luz, ao penetrar nos tecidos sofre um processo chamado scattering ou espalhamento, sendo então, absorvida pelas células e convertida em efeitos biológicos.

Quando um raio de luz incide sobre uma superfície, a porcentagem de luz que será refletida dependerá do ângulo de incidência desse raio. Quanto menor for o ângulo formado entre o raio incidente e a superfície irradiada, maior será a reflexão desse raio, e portanto, teremos menor absorção de energia por parte do tecido. (Figura 16) Daí a importância de aplicarmos o laser com o condutor de luz posicionado sempre de maneira perpendicular ao tecido, evitando assim a reflexão e maximizando a absorção do laser. (Figura 17)

A reflexão dependerá ainda das características ópticas do tecido, uma vez que estes são heterogêneos desse ponto de vista, já que cada tecido absorve e reflete a luz de maneira distinta. Tecidos com queratina, como a pele, por exemplo, refletem mais a luz laser do que tecidos sem queratina como as mucosas. O que buscamos no tratamento absorção do laser pelo tecido, pois a luz Iaser só atuará se for absorvida e, consequentemente, convertida em efeitos.

Figura 16 – Quanto menor for o ângulo formado entre o raio incidente e a superfície irradiada, maior será a reflexão desse raio, e portanto, teremos menor absorção de energia por parte do tecido.

 

Figura 17 – A peça-de-mão do equipamento laser deve sempre perpendicular ao tecido alvo, a fim de minimizar a reflexão da luz.

Fale Conosco

Deixe sua mensagem, retornaremos o mais breve possível.